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1. Introduction

We propose a novel nonparametric approach to the modeling 
of joint and survivor annuities, particularly useful in the case of 
right-censored observations. We build on previous results by Bulla 
et al. (2007); Muliere et al. (2000); Walker and Muliere (1997). The 
goal is to propose an alternative to copulas and other parametric 
constructions already used for the modeling of coupled lifetimes in 
insurance, for example in Frees et al. (1996), Carriere (2000) and 
Luciano et al. (2008), to cite a few important contributions.

The basic ingredients of our approach are Pólya urns (Mah-
moud, 2008), probabilistic objects with the ability of intuitively 
representing the idea of learning via reinforcement. As observed 
in Cirillo et al. (2013) and Cheng and Cirillo (2018), urns are able 
to learn hidden patterns in the data, discovering previously ignored 
features. The model here presented can actually be seen as a non-
conventional machine learning algorithm (Murphy, 2012).

Differently from the great majority of machine learning al-
gorithms, our Bivariate Reinforced Urn Process (B-RUP) belongs 
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to a particular class of models (Muliere et al., 2000; Walker 
and Muliere, 1997) with the extremely useful ability of com-
bining some a priori knowledge–possibly referring to experts’ 
judgements–with the information coming from actual data, per-
fectly in line with the Bayesian paradigm. This possibility allows 
for the incorporation of trends, tail events or other aspects that 
can be rarely observed in a data set–hence invisible to standard 
machine learning approaches, yet possible and with dramatic con-
sequences (Taleb, 2007). For instance, if an expert thinks that their 
data under-represent a given phenomenon, like for example some 
unusual lifetime combinations in the modeling of survivor annu-
ities, they could solve the problem by eliciting an a priori assigning 
a higher mass to those combinations, thus obliging the model to 
always take into account such a possibility, even if rarely (or not) 
present in the data. In a sense, a clever use of the priors can thus 
be an elegant way of dealing with sampling and historical bias 
(Derbyshire, 2017; Shackle, 1955).

Clearly, nothing guarantees the ability of eliciting a sound and 
reliable a priori: experts could naturally be wrong. The answer 
to such a relevant observation–we shall see–is that the bivariate 
urn model learns over time, at every interaction with actual data. 
A sufficient amount of data can therefore compensate for judge-
ments one does not trust completely, for unrealistic beliefs, or for 
no belief at all. In fact, as it shall be clearer later, the elicitation 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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of an a priori is not compulsory, it is only a relevant plus, and a 
B-RUP can also be used in an “objective” empirically-based way.

Another interesting feature of reinforced urn processes, when 
seen through statistical learning glasses, is that they are somehow 
immune to the “black box” argument (Knight, 2017) commonly 
used to criticize machine/deep learning. In fact, differently from 
other approaches, a B-RUP can be controlled and studied in its 
probabilistic details, controlling its features and allowing for fine 
tuning.

The paper is organized as follows. In Section 2 we briefly re-
call joint and last-survivor annuities, while in Section 3 we shortly 
deal with the problem of right-censoring. In Section 4, we describe 
the B-RUP model, focusing on its ability of dealing with censored 
observations. In Section 5, we discuss our results, using artificial 
and real data, and providing suggestions on how to use the B-RUP 
in practice, in terms of prior elicitation and parameter tuning. The 
real data are the same used by Frees et al. (1996), that we thank 
for sharing them with us, and that will be a benchmark for us. In-
terestingly, as we shall see, the B-RUP is able to obtain the same 
results of Frees et al. (1996), while guaranteeing more flexibility. 
Finally, Section 6 concludes the work and looks at future research. 
An appendix extends some aspects of Section 5.

2. Joint and survivor annuities

An annuity is a financial contract between two counterparties: 
an individual, called the annuitant, and a financial institution, like 
an insurance company. In such a contract, the former pays a given 
amount of money (in full or periodically) to the latter and, in re-
turn, they receive periodic payments, usually starting from a given 
time point in the future, and commonly until death. The goal 
of annuities is therefore to provide the annuitant with a steady 
stream of income, typically during retirement, and to offer in-
surance against lifetime uncertainty. It goes without saying that 
annuities are strictly connected to private pensions and other sim-
ilar products (Sheshinski, 2007).

A simple and quite popular extension of the single annuitant 
case we have just described is given by annuities involving more 
annuitants, most of the times just two. These are often the mem-
bers of a married couple or of a partnership, but parent-child and 
relative-relative combinations are also common (Frees et al., 1996; 
Brown and Poterba, 2000). An example is offered by joint and last-
survivor annuities, in which the insurance company pays as long 
as at least one of the two annuitants is alive. In this kind of con-
tracts, the death of one of the annuitants may have an impact on 
the stream of payments that the survivor receives. For instance, for 
p ∈ [0, 1], in a 100p% (e.g. 50%) joint and survivor annuity contract, 
payments are made in full while both annuitants are alive, but if 
one of the two dies, only 100p% (e.g. 50%) of the original amount is 
paid to the survivor (Sheshinski, 2007; Winklevoss, 1977). A pop-
ular version is the contingent joint and survivor annuity, which 
pays the full benefit as long as the first annuitant (plan member) 
is alive, and then changes the benefit to a portion which is usually 
one-half or two-thirds.

From an actuarial point of view, to evaluate a joint and sur-
vivor annuity, one needs the marginal and joint survival functions 
of both annuitants. Let X and Y be two random variables rep-
resenting the lifetimes of two annuitants in a joint and survivor 
annuity. Assume that today the age (say in years) of the first an-
nuitant is observed to be x, while for the second we have y. The 
joint probability of survival for another k years, given the current 
ages, is

S(x,y)
XY (k,k) := P (X > x + k, Y > y + k|X > x, Y > y), (1)

where k = 0, 1, ..., K .
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We can then look at the probability that at least one of the two 
annuitants survives another k years, i.e.

P(x,y)
L S (k) := P [(X > x + k) ∪ (Y > y + k)|X > x, Y > y]

= S(x,y)
X (k) + S(x,y)

Y (k) − S(x,y)
XY (k,k), (2)

where the subscript L S is the acronym of “last survivor”, with 
S(x,y)

Y (k) = P (Y > y + k|X > x, Y > y) indicating the marginal sur-
vival probability of the second annuitant given the present situa-
tion of the couple, and similarly S(x,y)

X (k) for the first annuitant. 
It is important to stress that, in Equation (2), both marginal prob-
abilities are conditioned on the ages of both annuitants. This is 
because, in the general situation where the lifetimes X and Y
share some kind of dependence, we have that S(x,y)

X (k) �= S(x,0)
X (k)

(Youn et al., 2002).
If we assume a constant interest rate r, the basic one-unit pric-

ing formula for a 100% joint and last-survivor annuity is given by

C(x, y) =
∞∑

k=0

P(x,y)
L S (k)

(1 + r)k
. (3)

In the 100p% situation, with 0 < p < 1, this formula is easily ad-
justed (Winklevoss, 1977).

Equations (2) and (3) imply that, in order to evaluate joint and 
survivor annuities, one needs to specify the dependence between 
the lifetimes of the annuitants. If we assume that their lifetimes 
are independent, then S(x,y)

XY (k, k) = S(x)
X (k)S(y)

Y (k), and the estima-
tion of the marginal probabilities of survival is all that is needed. 
Since the estimation of univariate survival functions is a widely 
studied and well-known topic (e.g. Cox and Oakes (1984)), pricing 
annuities under independence makes both modeling and compu-
tations considerably easier (Winklevoss, 1977), but not necessarily 
realistic.

That of independence is indeed always a strong assumption. As 
Frees et al. (1996); Carriere (2000); Luciano et al. (2008); Sanders 
and Melenberd (2016) and others have shown, the lifetimes of 
several couples in annuity contracts present a non-negligible pos-
itive dependence. Moreover, some studies suggest that annuitants 
tend to have higher individual survival probabilities with respect 
to people who do not buy annuities (Mitchell et al., 1999). Such a 
result opens to the possibility that also the dependence structure 
among couples that buy annuities, and couples that do not, dif-
fers. Although there is no conclusive study about differences in the 
coupled lifetimes of annuitants versus non-annuitants, Sanders and 
Melenberd (2016) observe that the magnitude of the positive de-
pendence for a random subset of 50, 000 couples–not necessarily 
annuitants–sampled from the whole Dutch population is signifi-
cantly smaller than what Frees et al. (1996) and Luciano et al. 
(2008) find for about 15000 couples of annuitants in Canada.1

Regardless of its magnitude, there are several reasons that ex-
plain, at least qualitatively, why the dependence in the lifetimes 
of couples (especially married couples and partnerships) is posi-
tive. Some of them are rather intuitive, like the possibility of both 
individuals dying at the same time because of an accident or a 
contagious disease, or the common habits they might share as a 
consequence of living together, like the food they eat or the en-
vironment they live in. Others are more linked to emotional, psy-
chological and medical aspects, like the “broken heart syndrome”, 
a well-known phenomenon in medicine, in which the sudden pass-
ing of one spouse greatly increases (at least temporarily) the prob-
ability of death of the surviving one because of bereavement and 
sadness (Jagger and Sutton, 1991).

1 Naturally an analysis taking into consideration the differences in the two coun-
tries and the related markets would be necessary to clean the effects, but the idea 
of some selection mechanism does not seem ludicrous.
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A question that naturally arises, when we consider the several 
possibilities for the modeling of joint mortality, is how these affect 
the annuity price in Equation (3). This question is well-addressed 
in Frees et al. (1996), where they compute the ratio between the 
annuity price under positive dependence and the price under inde-
pendence (we shall call it annuity ration from now on). To model 
dependence, they make use of copula models with Gompertz and 
Weibull marginals, and they find out that the annuity ratio varies 
between approximately 0.95 and 1.05, depending on the initial 
ages of the annuitants at contract initiation. This means that, if 
one assumes independence to simplify modeling, they may end 
up with the underestimation or the overestimation of the annu-
ity price by as much as a 5%. Compatible results are more recently 
obtained by Sanders and Melenberd (2016), even if the error they 
find is smaller than 5% on average, in absolute terms, for different 
types of contracts. Furthermore, the same authors underline that 
the error can be particularly larger and relevant for specific types 
of annuities, in which the joint survival distribution plays a major 
role, like for instance joint annuities.

3. Right-censoring

In survival analysis, right-censoring is a well-known problem 
in estimation (Kaplan and Meier, 1958). This usually occurs when 
individuals drop from the study before the event of interest has 
happened. If X is our age variable, when right-censoring occurs, 
the minimum X∗ = min(X, T X ) between X and a random censor-
ing time T X is observed.2 Every potentially censored observation 
is therefore represented by the couple (X∗, δ), where the indica-
tor δ tells if a given observation is censored (δ = 0) or not (δ = 1). 
Left-censoring can also be defined, but it is less relevant here. For 
more details see Klein and Moeschberger (2003).

While univariate censoring has been extensively studied in the 
literature, e.g. in Kaplan and Meier (1958); Elandt-Johnson and 
Johnson (1980) or Cox and Oakes (1984), far less progress has been 
made in the bivariate case. One of the first works to study this 
problem is that of Dabrowska (1988), in which the Kaplan-Meier 
estimator is extended to the two-dimensional framework. How-
ever, this estimator is known to produce negative masses when 
a large amount of censoring is present (Pruitt, 1991). In Wang and 
Wells (1997) or Gribkova and Lopez (2015), the censoring condi-
tions are relaxed to obtain better estimators. For example, in the 
context of coupled lifetimes, Gribkova and Lopez (2015) assume 
that the age difference between individuals is known and related 
to the censoring variables; in Lin (1993), conversely, the censoring 
variable is taken to be the same for both lifetimes. Other recent 
articles on nonparametric estimators under bivariate censoring are 
those of Lopez (2012) and Shen and Yan (2008). In all these works, 
censoring is assumed to be independent from the variables of in-
terest, an assumption we will also make in our construction.

In line with the univariate case, in the presence of bivariate 
censoring one plays with the quartet (X∗, δ, Y ∗, ε), where ε is the 
censoring variable associated to Y , and Y ∗ = min(Y , T Y ). The vari-
ables (X, Y ) are assumed independent from (T X , T Y ).

4. The Bivariate Reinforced Urn Process

The Bivariate Reinforced Urn Process (B-RUP) is our proposal for 
the modeling of joint and survivor annuities. Originally introduced 
by Bulla (2005); Bulla et al. (2007), it is here extended and adapted 
to the annuity framework.

We will show that this model is not only able to replicate 
the results one can obtain with other existing methodologies, like 

2 A common assumption (Gribkova and Lopez, 2015) is that the support of the 
distribution of X is included in the support of the censoring variable T X .
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copulas, but, at least within the realm of positive dependence, it 
also allows for a more flexible modeling, as it improves its per-
formances over time, and it allows for the exploitation of experts’ 
judgements.3

To describe the model, we start by defining its main building 
blocks: the beta-Stacy process of Walker and Muliere (1997), and 
the Reinforced Urn Process (RUP) of Muliere et al. (2000). Then 
we show an intuitive representation of RUPs via urns. Finally we 
discuss how several RUPs can be easily combined into a one-factor 
construction leading to the B-RUP.

4.1. Reinforced Urn Processes and beta-Stacy processes

The Reinforced Urn Process was first described in Walker and 
Muliere (1997), where the results of Blackwell and MacQueen 
(1973) and Ferguson (1973) are extended to right-censored data, 
thus defining the so-called beta-Stacy process, a neutral-to-the-
right (Doksum, 1974) generalization of the Dirichlet process (Fer-
guson, 1973).

The RUP is a combinatorial stochastic process, and it can be 
seen as a reinforced random walk over a state space of urns. De-
pending on how its parameters are specified, it can generate a 
large number of interesting models. Essential references on the 
topic are Muliere et al. (2000, 2003) and Fortini and Petrone 
(2012). Examples of applications can be found for example in Cir-
illo et al. (2013) and Peluso et al. (2015).

In this paper we specify a reinforced urn process able to gener-
ate a discrete beta-Stacy process, a particular random distribution 
over the space of discrete distributions.

Definition 4.1 (Walker and Muliere (1997)). A random distribution 
function F is a discrete beta-Stacy process with jumps at j ∈ N
and parameters {β j, ω j ∈ R+, j ∈ N}, if there exist mutually in-
dependent random variables {V j} j∈N , each beta distributed with 
parameters (β j, ω j), such that the random mass assigned by F to 
{ j}, written F ({ j}), is given by V j

∏
i< j(1 − V i).

Following Definition 4.1, we introduce couples {β j, ω j} ∈
R+ × R+ , with j ∈ N , such that β j, ω j ≥ 0, β j + ω j > 0, and 
limn→∞

∏n
j=0

ω j
β j+ω j

= 0. Then, given a discrete beta-Stacy process 
F with parameters {β j, ω j ∈R+, j ∈N}, and a sample (X∗

n, δn) of 
exchangeable4 and potentially censored observations, with X∗

n =
{X∗

n , n ≥ 1}, the sequence Xn = {Xn, n ≥ 1} is a RUP if

Ŝ X (x) = P (Xn+1 > x|X∗
n = x∗

n, δn = dn)

=
x∏

j=0

[
1 − β j + m∗

j (x∗
n,dn)

β j + ω j + s j(x∗
n)

]
, (4)

where m∗
j (xn, dn) = ∑n

i=1 1{xi= j,di=1} is the number of exact ob-

servations at x = j and s j(xn) = ∑n
i=1 1{xi≥ j} is the number of 

observations at x ≥ j. In the context of survival analysis, Equation 
(4) gives the probability of survival of a new individual (Xn+1), 
conditioned on the lifetime observations of previous individuals 
(X∗

n).
Notice that, by defining β∗

j = β j + m∗
j (xn, dn) and ω∗

j = ω j +
s j(xn) − m∗

j (xn, dn), we can obtain a new beta-Stacy process F ∗

3 It is worth noticing that copulas can also deal with negative dependence, so 
they are more flexible in that sense. However, when positive dependence can be 
safely assumed, the B-RUP needs less and weaker hypotheses about the shape of 
the joint distribution.

4 Exchangeability is a common assumption in Bayesian statistics (de Finetti, 
2017), and it represents a relaxation of the stronger hypothesis of independence. 
A sequence of random variables is exchangeable if their joint distribution is im-
mune to permutations in the order of appearance of the variables.
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Fig. 1. Representation of the RUP as a series of Pólya urns. After each sampling the 
urns are updated in a way that reinforces the probability of that sampling, giving 
the RUP its name. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

with parameters {β∗
j , ω

∗
j ∈ R+, j ∈ N}. The beta-Stacy process is 

thus conjugate and neutral-to-the-right (Doksum, 1974). The im-
portance of conjugacy is to be stressed, as it allows for continuous 
updating of the process over time, every time new observations 
become available. In other words, the posterior one can obtain as 
the result of a first cycle of Bayesian updates can then represent 
the a priori of a new cycle, without the necessity of restarting ev-
erything from scratch (Muliere et al., 2000).

4.1.1. Urn representation
Following Muliere et al. (2000), we can show that Equation (4)

can be obtained via a sequence of two-color Pólya urns. This intu-
itive representation makes the beta-Stacy process easier to grasp. 
To further simplify the treatment, we momentarily ignore censor-
ing.

Imagine we have M + 1 urns containing balls of two colors (red 
and green), as in Fig. 1a (hence M = 4). Urn 0 only contains green 
balls. To generate a RUP, we move along the urns according to the 
following rules:

• The process starts from Urn 0.
• For each urn, the probability that a given color is selected sim-

ply depends on the urn composition at the time of sampling.
• Every time we pick a ball, we note the color, and we reinforce 

the urn, that is we put the ball back together with an extra 
ball of the same color. This increases the probability of picking 
that color again in the future.

• If the color of the ball is green, we move forward to the next 
urn, which we sample to continue our walk. Conversely, if the 
color is red we must go back to Urn 0, and the process starts 
anew. Every time we restart from Urn 0, we define a new cycle 
for the RUP.

In Fig. 1b we see an example of a possible trajectory (•, •, •) and 
the resulting urn composition after each sampling. Notice that the 
probability of observing the same path in the next cycle has in-
creased, thanks to reinforcement. Please notice that from Urn 0 we 
necessarily move to Urn 1, while from the all other urns, we can 
move forward or jump back to Urn 0.

If we define the age X of death of an individual as the Urn X
where we sample a red ball, and every urn corresponds to one year 
of life, it is easy to see that the survival probability given by the 
urn construction above and that of Equation (4) coincide, under 
no censoring. The pairs {β j, ω j} would correspond to the initial 
numbers of balls of each color for the j-th urn, and the functions 
s j(·) and m∗(·, ·) to the extra numbers of balls due to sampling. 
j
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Further, the exchangeability of the observations is implied by the 
evolution of the Pólya urns (Mahmoud, 2008).

As said, the urn construction just analyzed generates a RUP 
without right-censoring. The possibility of censored observations 
can however be easily introduced: in case of a right-censored value 
at Urn j, we add extra green balls from Urn 0 to Urn j (included) 
and no red balls. Then we start again from Urn 0.

At every cycle, which for us represents the lifetime of an in-
dividual, the RUP learns and keeps memory of what happened 
before, thanks to the Pólya reinforcement, combining the informa-
tion from samplings with the initial compositions of the urns (the 
a priori). In this way what we learn from a group of people can be 
used to make inference about other people.

In Muliere et al. (2000), the properties of the urn construction, 
including the conditions for recurrence, are studied in detail.

4.1.2. Defining a prior
One of the characteristics of the beta-Stacy process, inherited 

from the Dirichlet process, is that its trajectories are centered 
around a certain probability distribution G(·), that is E[F ({ j})] =
G({ j}), which—in Bayesian terms—plays the role of the prior. As 
shown in Walker and Muliere (1997), a necessary condition for 
this is that

β j

β j + ω j
= G( j) − G( j − 1)

1 − G( j − 1)
, j ∈ N (5)

where G( j) = PG(X ≤ j) is the probability that X is at most j
under the centering measure.

The prior distribution G can also be used to define the initial 
compositions in a RUP. Following Walker and Muliere (1997) and 
Muliere et al. (2000), it is sufficient to set

β j = c j G({ j}), ω j = c j(1 − G( j)), c j ∈R+, j ∈N, (6)

with c j denoting the so-called strength of belief in the prior 
knowledge, and G({ j}) = PG(X = j). Notice that, given Equation 
(6), the necessary conditions for the couples {β j, ω j} to properly 
define a beta-Stacy process are automatically verified, if G(·) is a 
well-defined probability distribution.

By giving high values to the strength of belief c j , larger 
amounts of data are required in order for the posterior distribu-
tion, obtained via sampling and given in Equation (4), to move 
away from the a priori. On the contrary, when c j → 0, Equation 
(4) tends to the Kaplan-Meier (KM) estimator of Kaplan and Meier 
(1958). As observed in Walker and Muliere (1997), setting c j = c, 
∀ j, leads to a Dirichlet prior.

4.2. Building dependence

We have seen how the RUP model can be used to model life-
times of single individuals. However, the ultimate goal of this work 
is the modeling of coupled lifetimes, and for that reason we need 
to extend the RUP so that it can deal with this type of problems. 
We can do so by using the one-factor construction introduced in 
Bulla (2005): the Bivariate Reinforced Urn Process (B-RUP).

Assume we observe n couples of (possibly) censored lifetime 
data of the form 

(
(X∗

n, δn), (Y ∗
n,εn)

)
, where X∗

n and Y ∗
n are n-

dimensional vectors of observations, and where δn and εn are the 
corresponding vectors of indicators for right-censoring, as defined 
in Section 3.

Let An , Bn and Cn be three independent RUPs, defined exactly 
as in Section 4.1 and with their respective parameters (β A

j , ωA
j ), 

(βB
j , ωB

j ) and (βC
j , ωC

j ) for j ∈N . One can easily create a bivariate 
model of the form
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Xi = Ai + Bi

Yi = Ai + Ci, 1 ≤ i ≤ n.
(7)

The lifetimes of Xi and Yi are thus composed of a common quan-
tity Ai and two personal elements, Bi and Ci . In this way, the 
dependence between Xi and Yi relies entirely on Ai , and thus, 
conditioned on Ai , Xi and Yi are independent.

A straightforward calculation yields

Cov(Xn+1, Yn+1|An, Bn, Cn) = Var(An+1|An) > 0, n ≥ 1, (8)

thus implying that the B-RUP construction can only model positive 
dependence. For the application at hand, that is the joint modeling
of lifetimes of coupled annuitants, this is not a problem, since pre-
vious studies have shown a strictly positive dependence (Frees et 
al., 1996). However, it is important to stress that the B-RUP model 
should not be used when negative dependence is also possible.

In Bulla (2005), the sequence {(Xn, Yn), n ≥ 1} is shown to be 
exchangeable (given that the RUPS An , Bn and Cn are exchangeable 
by construction), and therefore, by the de Finetti representation 
theorem (de Finetti, 2017), there exists a joint random distribu-
tion function F XY conditionally on which the elements of (Xn, Y n)

are independent and identically distributed according to F XY . The 
properties of F XY have been studied in detail in Bulla et al. (2007).

Let F X and FY be the marginal distributions of X and Y , re-
spectively. Clearly, we have

F X = F A × F B ,

FY = F A × FC ,

with × denoting the convolution operation, so that both F X and 
FY are convolutions of beta-Stacy processes. Furthermore, if P is 
the probability function corresponding to F , one has

P XY (x, y) =
min(x,y)∑

a=0

P A(a)P B(x − a)P C (y − a), ∀x, y ∈ N2
0 .

(9)

Although the joint posterior distribution of Equation (9) can in 
principle be computed analytically5 (Bulla et al., 2007), its com-
plexity grows quickly with the number of observations, making 
it already unfeasible for a relatively small sample. A convenient 
way of by-passing the problem is therefore to use a Markov Chain 
Monte Carlo (MCMC) approach, also known as Gibbs sampler, to 
obtain the joint probability distribution from the posterior distri-
butions of An , Bn and Cn , using the one-factor construction.

The MCMC method consists of the following steps:

1. Generate a realization of A[k]
n , with the superscript referring to 

the iteration number, at the k-th iteration conditioned on the 
available data of the previous iteration. That is, sample A[k]

n

from its conditional distribution, i.e.

P [A[k]
n = an|A[k−1]

n−1 , X∗
n, δn, Y ∗

n,εn] ∝ (10)

P [Bn = xn − an, δn = dn|Bn−1 = X∗
n−1 − A[k−1]

n−1 , δn−1]
P [Cn = yn − an, εn = en|Cn−1 = Y ∗

n−1 − A[k−1]
n−1 ,εn−1]

P [A[k]
n = an|A[k−1]

n−1 ],
where, using the fact that P [X ≥ k] − P [X > k] = P [X = k], 
one has

5 Also observe that the conjugacy of the constituent RUPs {An}, {Bn} and {Cn}
allows for the continuous updating of the B-RUP as well.
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P [Bn = xn − an, δn = dn|Bn−1 = X∗
n−1 − A[k−1]

n−1 , δn−1] =
P [Bn ≥ xn − an|Bn−1 = X∗

n−1 − A[k−1]
n−1 , δn−1]−

1{δn=1}P [Bn > xn − an|Bn−1 = X∗
n−1 − A[k−1]

n−1 , δn−1],
and with the conditional distribution of Cn defined in an anal-
ogous way.
Since A[k]

n is an exchangeable process, Equation (10) also ap-
plies for any element of A[k]

n by simply changing A[k−1]
n−1 with 

A[k−1]
−i = {A[k]

n , 1 ≤ n < i, or A[k−1]
n , n > i ≥ 1}. With this in 

mind, start simulating A[k]
1 using the values of A[k−1]

−1 and re-

peat this process until a new A[k]
n has been obtained. Once 

this is done, compute Bn = X∗
n − A[k]

n and Cn = Y ∗
n − A[k]

n . Note 
that, defined in this way, right-censoring is only applied to Bn

and Cn , and not to A[k]
n . As already underlined in Frees et al. 

(1996) and Carriere (2000), such an assumption appears ac-
ceptable from an empirical point of view.

. Create a new combination (Ak, Bk, Ck) from the respective 
conditional marginal distributions, as per Equation (4).

. Compute Xk = Ak + Bk and Yk = Ak + Ck . Set k = k + 1.

. Repeat steps 1-3 until k reaches the maximum number of it-
erations N .

tice that the previous algorithm requires, besides the (possibly) 
nsored observations of (X, Y ), an initial sample for A, that is, 
0] . Since A is not observed in practice, a sensible approach is to 
n the MCMC several times for different samples A[0]

n .

Empirical results

In this section we apply the B-RUP model to calculate the de-
ndence of coupled lifetimes, in order to price joint and survivor 
nuities.
We first consider an analytical example, where we sample pos-
ly censored observations from a known distribution. Knowing 
 original distribution will not only allow us to estimate the 

ference between the original distribution and the posterior com-
ted through MCMC, but also to study how these differences 
ect the final price of the annuity.
In the second part of the section, the B-RUP is tested on a well-

own Canadian data set originally used by Frees et al. (1996), 
ich we will also use as a benchmark.

. Analytical example

Assume that X and Y are linked through the one-factor model 
Equation (7). Assume that A follows a Poisson distribution with 
ensity parameter λ equal to 25 (from now on we use the no-
ion A ∼ Poi(25)), and that B ∼ Poi(35) and C ∼ Poi(40). This 
plies that the marginals of X and Y are Poisson distributions 
th parameters 60 and 65, respectively; and that Cov(X, Y ) =
r(A) = 25. The correlation between X and Y is therefore ap-
oximately 0.4.

Moreover, while not necessary true in general, we will make 
me assumptions about the dependence between the censoring 
riables, T X and T Y (see Section 3), so that we can generate 
nsored observations and better study the properties of our con-
uction. We start from the naive observation that the two an-
itants of a joint and survivor annuity enter the contract at the 

e time; say that X0 is the age of the first annuitant at the date 
the signature, while Y0 is that of the second person. If we de-
te the observation period by �, it is clear that T X = X0 +� and 
= Y0 +�. Moreover, X0 = Y0 + θ , where θ is the age difference 

tween the annuitants, which can be negative if Y0 > X0.
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Fig. 2. Comparison of the marginal distributions of X and Y . In green we show the prior distribution, the Kaplan-Meier estimators in red, the B-RUP solution in blue and the 
original distribution in black. All distributions are conditioned on the minimum value of the uncensored observations. For this sample those were Xmin = 34 and Ymin = 39.
Table 1
Proposed strength of belief scenarios. Notice that, since we are considering a data 
set of size 104, even under the high belief scenario, the prior will not be able to 
actually affect those areas where the observations are more concentrated, but it 
will definitely influence the areas with fewer data points.

Low belief High belief

c A , cB , cC 10−6 102

Therefore, to obtain right-censored observations, we have to 
choose the distributions of T X , � and θ . In what follows we take 
T X ∼ Poi(50), � ∼ Poi(2) and θ = θ∗ − θ0, with θ∗ ∼ Poi(7) and 
θ0 = 5. We then sample n = 104 couples of observations, of which 
almost 90% turn out to be at least partially censored (i.e. at least 
one of the annuitants in the couple is right-censored).

Following the procedure defined in Section 4, the first step to 
use the B-RUP is to define prior distributions for the target vari-
ables according to Equation (6), as well as the strength of belief 
parameters. The priors we choose are G A = Poi(20), G B = Poi(20)

and GC = Poi(20), respectively. For the strengths of belief, ck with 
k ∈ {A, B, C}, we consider two different scenarios: one where the 
strengths of belief are very small, so that the posterior distribution 
is strongly affected by the incoming data, as if we did not trust our 
a priori; and another scenario where the strengths of belief are big 
enough to keep memory of the a priori—which we trust—and, in 
particular, to influence those areas in the data with less observa-
tions. As said, the a priori can indeed be used to complement the 
data with information about rarely observed events and trends. In 
Table 1 the values of the strengths of belief for both scenarios6 are 
provided. In the following we will refer to them as the “low be-
lief” and the “high belief” scenarios, or with the subscripts l and h, 
when referring to the results obtained with the B-RUP model. For 
example, when we write B-RUPl , we refer to the B-RUP estimators 
in the low belief scenario. B-RUPh is defined analogously for the 
high belief scenario.

In order to initialize the Gibbs sampler, we also need to define 
an initial sample for A, which is not observable in practice. There-
fore, this sample will be “artificial”, and we need a reasonable way 
of generating it, taking into consideration the characteristics of A, 
like for example its positiveness. Moreover, the resulting posterior 
distribution will be affected by this artificial sample, and thus in 
practice it is recommended to compute the posterior for several 
appropriate initial samples. In our case, we will sample observa-
tions from the same distribution that we chose for the prior of A, 

6 Note that we could go as far as to define different strengths of belief for each 
urn within a RUP (Muliere et al., 2000). In this work, however, we will always as-
sume the same strength of belief for each RUP.
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so that, for this particular example, we generate 104 samples from 
a Poi(20).

In Fig. 2 we show the recovered marginal distribution using the 
B-RUP via MCMC, as well as the KM estimators and the original 
distribution. Notice how, due to the lack of exact samples on the 
right tail of the distribution, the KM estimator is not properly de-
fined on the whole support of the original distribution, but only up 
to the maximum value of the uncensored observations. The B-RUP 
model, on the contrary, is able to recover the right tail of the dis-
tribution, although the fitting is clearly worse in that part of the 
curve, because of the evident lack of observations. If available, a 
better a priori could here be used to improve tail fitting.

We also present the joint distribution in Figs. 3a and 3b, for the 
low and high belief scenarios, respectively. Notice how, in Fig. 3a, 
the fitting is worse in the upper-right corner than in the lower-left 
corner, in accordance with the right-censoring effect. For the high 
belief scenario, however, the prior distribution dominates in those 
areas of few observations and we recover a smoother surface, as 
per Fig. 3b.

A more quantitative comparison can be found in Table 2, where 
we show the means, the variances and the correlation for both 
B-RUP scenarios, as well as for the KM estimator, the theoretical 
analytical solution, and the data. In this last case we provide the 
sample estimates under two different points of view: 1) correctly 
using only the truly uncensored observations (“Uncensored”), and 
2) taking into consideration the entire data set, ignoring the pres-
ence of censoring (“Whole”). While this second approach is not 
correct (Klein and Moeschberger, 2003), it can be heuristically use-
ful to better understand the impact of right-censoring in the data. 
For example we can clearly see that not considering censoring can 
lead to a serious overestimation of the dependence in the data.

Always in Table 2, observe how the B-RUP is able to recover the 
correlation, under both scenarios,7 something not possible when 
using the KM approach. Moreover, observe how the B-RUP, in par-
ticular under the low strength of belief, better captures the vari-
ability of both X and Y .

In Table 3 we show permutation tests performed on the means 
and the variances. Under the null hypothesis of no difference be-
tween the obtained estimates and the true analytical values of 
Table 2, the tests never reject the null for the B-RUP estimators 
under the low strength of belief scenario, at a standard 5% signif-
icance level. These permutation tests where performed simulating 
samples of size 103 from both the B-RUP (low and high strength 
of belief) and the KM marginals. For the mean, the test statistic 
used is the absolute difference between the means, while for the 
variance Good’s test (Good, 1994) is employed. Looking at Table 3, 

7 Although both scenarios give reasonable results, the low belief scenario returns 
values closer to the actual ones, being more data-driven, as expected.
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Fig. 3. Contour plot comparing the analytical distribution with the one obtained through the B-RUP model for the low (a) and high (b) belief scenarios. All distributions are 
conditioned on the minimum value of the uncensored observations: Xmin = 34 and Ymin = 39.

Fig. 4. Ratio between the annuity values of the joint and independent survival models. The left plot (a) shows the surface obtained using the B-RUP construction with low 
strength of belief, while the right plot (b) shows the price ratio using the actual distribution (via the known analytics). Note how the ratio differs more between the two 
plots for high initial ages, since, because of the censored observations, the B-RUP fitting is worse in that area. The result is nevertheless quite positive.
Table 2
Comparison of the means, the variances and the correlation of X and Y using the 
uncensored data, the whole data set (wrongly assuming no censoring), the KM es-
timator, the B-RUP estimator and the original analytical solution, respectively.

Uncensored Whole KM B-RUPl B-RUPh Analytical

Mean(X) 52.877 50.684 59.811 59.811 59.341 60.005
Mean(Y) 56.690 53.088 64.691 64.691 64.227 65.007
Var(X) 35.498 39.524 53.486 55.755 50.886 59.905
Var(Y) 35.466 46.689 54.775 62.528 56.071 64.840
Corr(X,Y) 0.470 0.883 – 0.421 0.361 0.400

Table 3
Permutation test for the means and the variances of X and Y , using samples of 103

observations with 104 permutations. The samples are taken from the KM estimator 
and the B-RUP with low and high strength of belief. In bold we underline the situa-
tions for which the null hypothesis of no difference between the estimates and the 
true values (from the analytical model) is rejected, for a 5% significance level.

KM B-RUPl B-RUPh

mean(X) 0.6612 0.4561 0.3254
mean(Y ) 0.6256 0.1354 0.5106
var(X) 0.0881 0.1934 0.0193
var(Y ) 0.0239 0.4859 0.0217

we can conclude that the B-RUP with low strength of belief even 
beats the KM, which is not able to correctly recover the variance 
of Y . If we also take into account that the KM approach cannot es-
timate the correlation, as already discussed for Table 2, the B-RUPl
performance is even more appreciable.

Further, observe that, since the a priori is considerably differ-
ent from the analytical solution, it is no surprise that, for the high 
strength of belief case, the B-RUPh performances worsen for the 
variances of both X and Y . As known, the variance is in fact par-
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ticularly sensitive to discrepancies in the tails, and we already said 
that the B-RUPh puts a non-negligible mass on the right tail, which 
is never really updated by the data. Once again we want to stress 
that this is actually a sign of the power and flexibility of the B-
RUP, in case of a credible a priori (clearly not the case in this very 
simple example).

Once we have the joint distribution of the pair (X, Y ), we can 
price annuities using Equation (3). Following Frees et al. (1996), we 
are interested in the annuity ratio between the price when assum-
ing dependence and the price when assuming independence. For 
the independent scenario we simply use the marginals obtained 
in Fig. 2, while for the dependent scenario we use the joint dis-
tribution of Fig. 3a. Moreover, according to Equation (3), once we 
know the joint distribution, the annuity price depends on three 
quantities: the ages of the two annuitants at the beginning of the 
contract, which we call entry/initial ages, and the interest rate. As 
in Frees et al. (1996), we first show the dependence of the annuity 
ratio for several initial ages with a fixed interest rate, and then we 
vary the interest rate and assume that both annuitants have the 
same age, so that we can still represent the results in a 3D plot.

In Figs. 4a and 4b, we show the annuity ratio obtained with 
the B-RUP construction and the true (analytical) distribution for 
an interest rate of r = 0.05. Notice how, in this example, when 
considering dependence, the price can be up to 7% higher than 
in the independent scenario for some initial ages, especially when 
the age difference is large. For smaller age differences, conversely, 
the annuity ratio takes values below the unit. For low initial ages 
for both annuitants, the death event is still far away with high 
probability, and thus the annuity ratio barely moves from the unity 
in that area.

Looking at Figs. 4a and 4b, it is precisely for high annuity ra-
tios that the B-RUP estimators differ more from the analytical ones. 



L.A. Souto Arias and P. Cirillo Insurance: Mathematics and Economics 99 (2021) 174–189

Fig. 5. Ratio between the annuity values of the joint and independent survival models. The left plot (a) shows the surface obtained using the B-RUP construction with low 
strength of belief, while the right plot (b) shows the price ratio using the true (analytical) distribution. A visual comparison suggests that the B-RUP definitely performs well.
Table 4
Absolute value differences in the annuity ratios obtained with the B-RUP model and 
the analytical distribution for several initial ages of the annuitants (Fist Annuitant -
FA, Second Annuitant - SA) with an interest rate of 0.05. Given the small differences, 
we can say that the B-RUP is able to recover the “truth” from the data.

Age FA
Age SA

20 30 40 50 60

20 0.0003 0.0000 0.0001 0.0001 0.0002
30 0.0000 0.0005 0.0001 0.0001 0.0005
40 0.0001 0.0000 0.0009 0.0000 0.0008
50 0.0001 0.0003 0.0001 0.0013 0.0011
60 0.0005 0.0010 0.0024 0.0034 0.0002

This, again, is a consequence of the censored observations, that do 
not allow for a proper estimation due to the lack of information 
about the right-tail of the distribution.8 In Table 4 we present the 
absolute value differences between the B-RUP and true estimators 
for several initial ages and a 5% interest rate. The results observed 
are clearly in line with what we have just said in terms of age 
differences. The performances of the B-RUP are definitely satisfac-
tory.

Finally, in Figs. 5a and 5b, one can find the annuity ratio as 
a function of the interest rate for the same initial age for both 
annuitants. In accordance with the previous results, the annuity 
ratio is above one for large initial ages, and below one for low 
initial ages. Furthermore, this effect seems to be more pronounced 
for small interest rates, since the curves are steeper than for high 
interest rates. This tendency is naturally the same for both the B-
RUP estimator and the original distribution.

5.2. Canadian data set of Frees et al. (1996)

Let us now consider a real-world application, using a well-
known data set, initially presented in Frees et al. (1996), and later 
also studied in the relevant works of Youn and Shemaykin (1999), 
Carriere (2000), Youn and Shemaykin (2001) and Luciano et al. 
(2008), among others.

The data set contains 14,497 contracts from a large Canadian 
insurer, and the period of observation runs from December 29, 
1988, until December 31, 1993. To simplify the interpretation and 
the comparability of our results with the previous works of Frees 
et al. (1996) and Luciano et al. (2008), we have removed same 
sex contracts and, for every couple, we have kept only one con-
tract, leaving a total of 11,454 contracts. Further, we have ignored 
couples were the annuitants age was less than 40 at the end of 

8 Note that this should be seen as an indicator of the importance of choosing a 
proper prior distribution. Since the data barely contains any information about the 
right tail of the distribution, it is up to the expert to give a reasonable insight about 
tail events.
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the observation period, thus excluding a very limited number of 
parent-child annuities. All in all we have ended up with a data set 
of 11,421 male-female couples.

For each couple, the following information is available: dates of 
birth, dates of death or ages at the end of observation period, and 
date of contract initiation. Once the observation period ends, we 
no longer have any information about the individuals, and thus for 
those who lived longer than December 31, 1993, the lifetimes are 
right-censored.

Only a small portion of all the lifetimes in our data is actu-
ally uncensored, i.e. fully observed. In particular: 10.87% of the 
male lifetimes, 3.93% of the female lifetimes, and 1.71% of the 
joint (couple) lifetimes. The last 1.71% corresponds to 195 couples, 
of which 24 died within a one-day period, 59 within one month, 
and 92 within one year. Therefore, a considerable portion (47%) of 
the uncensored couple deaths is either likely due to an accident–
which would explain both spouses’ dying within a day–or to some 
other impactful reason like a highly contagious disease, or a strong 
broken heart syndrome (Jagger and Sutton, 1991). In these situ-
ations, it is expected that the correlation between the annuitants’ 
lifetimes is strongly positive, and it actually is. However, as we will 
see shortly, taking only into account the uncensored observations 
highly overestimates said dependence for all the other couples.

To model the data with the B-RUP, we follow the exact proce-
dure as before. We start by identifying the target variables, define 
their respective priors, and then apply the Gibbs sampler with pre-
defined strengths of belief to merge the a priori knowledge with 
the data. The targets are, once again, A, B and C , and the priors we 
chose are G A = Poi(60), G B = Poi(15) and GC = Poi(15). With this 
choice, the marginals for X and Y are both Poisson distributions 
with parameter μ = 75, and the correlation is approximately 0.8. 
This prior setting (from now on, the Poisson scenario) takes into 
account the sample moments and correlation one can estimate di-
rectly from the uncensored observations, and that are shown in 
the first column of Table 5. For the strengths of belief we will still 
use the scenarios in Table 1. As before, for initializing the Gibbs 
sampler we will generate observations from the prior we chose for 
A.

The decision of choosing distributions whose moments are in 
line with (a part of) the empirical data is to show a possible way 
of eliciting the a priori. Clearly, in case of experts’ judgements or 
other sources of knowledge, one can also elicit completely subjec-
tive priors. In Appendix A, we show the impact of changing the a 
priori.

The rest of the section is structured as follows: in Subsection 
5.2.1 we show the B-RUP estimation of the joint survival function, 
and in Subsection 5.2.2 the relative annuity calculations; then in 
Subsection 5.2.3, we compare our results with the copula approach 
one can find for example in Frees et al. (1996).
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Fig. 6. Comparison of the marginals of X and Y using a Poisson prior. In green we show the prior distribution, the Kaplan-Meier estimators in red and the B-RUP solution in 
blue. The upper row shows the results for the low belief scenario and the lower row the same for the high belief scenario. All distributions are conditioned on the minimum 
value of the uncensored observations. For this example those were Xmin = 51 and Ymin = 46.
Table 5
Comparison of the means, variances and correlation of X and Y using: the uncen-
sored data, the whole data set (wrongly assuming no censoring), the KM estimator 
and the B-RUP estimator for both low and high strength of belief, and the copula 
model, respectively.

Unc. Whole KM Poil Poih

Mean(X) 74.514 71.710 86.769 85.183 85.801
Mean(Y) 74.011 68.871 89.625 85.509 87.108
Var(X) 52.049 42.821 75.553 57.556 74.305
Var(Y) 61.707 54.118 56.316 37.034 54.947
Corr(X,Y) 0.820 0.776 – 0.477 0.421

5.2.1. B-RUP results for the joint survival function
Fig. 6 shows the B-RUP marginal distributions for both the low 

and high strengths of belief. We observe that the marginal distri-
bution for the first annuitants (males) is nicely recovered. However, 
the differences are clearly bigger9 for the marginal of Y –the sec-
ond annuitant (females)–since censoring seems to affect more the 
right-tail.

The lack of information about the right-tail of the distribution 
of female lifetimes is so large that the KM cumulative probability 
at the age of 97 is around 0.8, while for the age of 98 the cu-
mulative distribution function (cdf) reaches its maximum value of 
1. Taken literally, this would mean that there is a 20% probabil-
ity for females of dying between 97 and 98 years, something we 
know is not true. This unrealistic behavior could be due to the fact 
that, as per Table 5, female annuitants have a slightly longer life 
expectancy than males, while, from the initial ages at which they 
enter the contract, we see that on average (Luciano et al., 2008) 

9 We observe that the differences are slightly smaller for the high strength of 
belief. This could be due to the fact that a strong a priori helps filling the gaps in 
the right tail of the marginals, which, because of censoring, are highly unrealistic.
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females are three years younger than males, when the observation 
period starts. This combination of younger entry age plus higher 
life expectancy could be the reason why censoring affects more 
the distribution of females than that of males for this particular 
data set.

Some additional numbers can give insight about the lack of 
data in the tails. Only 48 females have indeed survived until at 
least 90 years. Conversely, the number of males observed in the 
same range is 77. While this difference may not seem significant, 
notice that the life expectancy of males, according to the results in 
Table 5, is 3 years lower than that of women. Therefore one would 
expect to observe more women at high ages than men, whereas 
the opposite happens in our data. This could also be explained by 
the lower entry ages of females with respect to males.

Table 5 presents the means and the variances of X and Y , and 
their correlation, for the raw uncensored data, the KM estimator 
(notice that in this case correlation is not obtained because inde-
pendence is assumed), and the B-RUP. For completeness, we also 
provide all quantities when taking all observations as uncensored 
(“Whole”), as we did in the analytical example.

First notice that using only uncensored observations leads to an 
underestimation of the average lifetimes and to a likely overesti-
mation of dependence. But this is no surprise, as it is known that 
ignoring censoring is highly misleading in survival analysis (Klein 
and Moeschberger, 2003).

In Figs. 7a and 7b we show the joint distributions obtained 
with the B-RUP model for the low and high belief scenarios, re-
spectively, as well as the prior distribution for comparison pur-
poses. Notice how, although their marginals are very similar–see 
Fig. 6–the shape of the contours is considerably different around 
the areas of lower probability. Conversely the joints are more com-
patible around the inner contours, for the bulk of the distribution, 
sign that the strength of belief is not large enough to affect the ar-
eas where data are concentrated. In particular, for high strengths of 
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Fig. 7. Contour plot showing the joint distribution obtained via the B-RUP model for the low (a) and high (b) belief scenarios and their respective densities via bivariate 
kernel estimation ((c) and (d)) using a Poisson prior. All distributions are conditioned on the minimum value of the uncensored observations, i.e. Xmin = 51 and Ymin = 46.

Fig. 8. Surface plot showing the relative difference between the joint survival distribution and the product of the marginal survival distributions (independence) for the low 
(a) and high (b) belief scenarios.
belief the contours are somewhat smoother, a phenomenon which 
we already observed in the analytical example. This makes the dis-
tribution of Fig. 7b easier to interpret. Nevertheless, notice that 
this smoothing induced by the strength of belief is a secondary 
role, while the main purpose of a reliable prior is to embed behav-
iors that are not captured by the data. Moreover, whereas further 
increasing the strength of belief would surely result in smoother 
distributions, we could end up giving a larger weight to the prior 
distribution than originally intended.

A way to improve our previous results, obtaining a more 
tractable joint distribution, while maintaining the desired strength 
of belief, is to use a kernel bivariate density estimation. For ex-
ample, we can employ a bivariate normal kernel, with bandwidth 
parameters consistent with Sylverman’s rule of thumb (Sylverman, 
1986). The obtained distributions are presented in Figs. 7c and 7d, 
for low and high strengths of belief, respectively. Note that the 
contours of the high belief kernel estimate are considerably more 
183
symmetric than those of the low belief kernel estimate, in accor-
dance with the results of Figs. 7a and 7b.

Notice that, by increasing the strength of belief, the areas with 
fewer observations are dominated by the prior, and this causes a 
decline in the correlation, which goes from 0.477 to 0.421, consis-
tently with the findings in Table 5.

As observed in Carriere (2000) for this very same data set–
and more recently in Sanders and Melenberd (2016) for a data set 
concerning the whole Dutch population–the positive dependence 
between the lifetimes of married couples increases with the ages 
of its members. In other words, people in their forties are expected 
to present a smaller positive dependence than a couple in their 
eighties. To check for this phenomenon, as in Sanders and Melen-
berd (2016) we compute the relative difference between the joint 
survival function and the product of the marginal survival distri-
butions. The results are in Figs. 8a and 8b for the low and high 
belief scenarios, respectively, and they are clearly in line with an 
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Fig. 9. Ratio between the annuity values of the joint and independent survival models using the B-RUP estimators. The left plot (a) shows the dependency with the initial 
age of the annuitants an interest rate of 0.05 for low strength of belief. The right plot (b) shows similar results for high strength of belief.

Fig. 10. Ratio between the annuity values of the joint and independent survival models using the B-RUP with different strengths of belief ((a) and (b)).
increase of dependence with age. Moreover, from the same figures 
we can conclude that the relative difference is bigger under the 
low belief scenario, which would explain the slight increase in the 
overall correlation (Table 5).

5.2.2. Annuity pricing with the B-RUP
Now that we have estimated the joint probability distribution, 

we can calculate the annuity ratio. We still assume a fixed interest 
rate of 0.05 and show the annuity ratio for several initial ages of 
the annuitants. Next, when we want to compute the annuity ratio 
as a function of the interest rate, we will hypothesize that annui-
tants enter the contract at the same age to simplify the exposition, 
so that we can easily plot the results as a function of the interest 
rate only.

Fig. 9 shows the results for the low and high strengths of be-
lief, and the fixed interest rate. In line with expectations, even for 
the annuity ratio, the high belief scenario gives again a smoother 
surface.

Notice that, in both cases, the annuity ratio increases with the 
age difference between the annuitants. When one of the annui-
tants dies at a very old age, the probability for the surviving spouse 
to also die at an old age is larger under positive correlation than 
under independence. This effect seems to be bigger when the fe-
male is the surviving annuitant, probably because of the larger life 
expectancy of females with respect to males (Carriere, 2000).

When both spouses are around the same age, the annuity ra-
tio takes values below one, specially for very high entry ages. If 
one annuitant dies at a young age, the probability of the remain-
ing annuitant to also die in the near future is higher when positive 
dependence is assumed, but in the long term the surviving annu-
itant will count as being independent from the deceased spouse, 
and the annuity ratio is closer to 1. Conversely, for high entry ages, 
the impact of the deceased spouse upon the surviving annuitant is 
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more relevant in the near future than in the long term—according 
to the meaning of “high” entry ages, there is no long term survival 
to be expected in the first place—and the annuity ratio keeps on 
decreasing below the unit. All these findings are in line with the 
results obtained in Frees et al. (1996) for the same data set with 
copula models.

Also notice the similarity of these surfaces with those of Fig. 4: 
qualitatively the behavior is mostly the same. This is because in 
both cases we have positive dependence, and thus all the reason-
ing developed in this section also applies for the analytical exam-
ple. Moreover, since the correlation levels are very similar (around 
0.5), we obtain annuity ratios of comparable orders.

The results of the annuity ratio as a function of the interest 
rate can be found in Fig. 10. Please notice how the overall shape is 
in accordance with what we already observed in Fig. 5. For small 
interest rates and entry ages, the annuity ratio is below one, mean-
ing that the annuity price with independent mortality is overesti-
mated. As we increase the entry age, the annuity ratio decreases 
up to a minimum (0.9527 for and interest rate equal to 0 and an 
entry age of 71 years), from where it starts to increase again, also 
reaching values above the unit.

We would like to stress that, while annuity ratios of 1.02 or 0.98 
may seem close enough to 1, and this could lead to the conclusion 
that it is ok to assume independence, the nominal value for an 
annuity contract is usually considerably large, and thus the final 
difference in the prices may not be negligible in monetary terms. 
In Table 6 we show some values of the annuity ratio for particular 
entry ages.

The results above are in line with what Frees et al. (1996) and 
Luciano et al. (2008) found on the same data, using different ap-
proaches like copulas, suggesting that the B-RUP can be safely used 
as an alternative model.
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Fig. 11. Comparison of the marginals of X and Y using a Poisson prior. In red we show the Kaplan-Meier estimators and the copula distribution in black. All distributions 
are conditioned on the minimum value of the uncensored observations. For this example those were Xmin = 51 and Ymin = 46.
Table 6
Annuity ratio obtained with the B-RUP model with low strength of belief parame-
ters for several initial ages of the annuitants with an interest rate of 0.05. Assuming 
independence can definitely be a bad choice in pricing.

X
Y

40 50 60 70 80

40 0.993 0.996 0.999 1.001 1.007
50 0.996 0.989 0.992 1.000 1.012
60 0.999 0.993 0.979 0.988 1.019
70 1.001 1.001 0.990 0.966 1.009
80 1.007 1.013 1.021 1.015 0.977

In the next Subsection we compare the B-RUP and a copula 
approach in some more detail.

5.2.3. What about copulas?
We finally compare the performance of the B-RUP with copu-

las. In particular, we choose the Frank copula model of Frees et al. 
(1996), which proved to give good results for the annuity problem.

In Frees et al. (1996), Gompertz distributions are used for the 
individual lifetimes, and the Frank copula to model the depen-
dence. The Gompertz distribution is given by

Gomp(x;μ,σ ) = 1 − exp
(

e− μ
σ (1 − e

x
σ )

)
, (11)

where μ, σ are the location and scale parameter, respectively.
The Frank copula is defined as

C(u, v;α) = 1

α
log

(
1 + (eαu − 1)(eαv − 1)

eα − 1

)
, (12)

where u, v are the marginal distributions for the male and female 
annuitant, respectively, and α is the parameter controlling the de-
pendence. A negative value of α indicates positive dependence, 
while α = 0 means that we have independence (Nelsen, 2006).

It was already shown in Frees et al. (1996) that this model can 
be calibrated via maximum likelihood estimation (MLE), and we 
refer to the original paper for all the details regarding the estima-
tion of the parameters. In Table 7 we present the results obtained 
using MLE, where (μX , σX ) are the Gompertz estimates for the 
male annuitant, and (μY , σY ) the estimates for the female annui-
tant. Since the value of α is highly negative, we expect a strong 
positive dependence. It can be seen in Table 8 that this corre-
sponds to a Pearson correlation of 0.51.

In Figs. 11a and 11b we present the marginal distributions for 
this model, with also the KM estimator for comparison. If we com-
pare these plots with those of Fig. 6, we see that both the B-RUP 
and the copula model return very similar curves. We can also com-
pare the moments using Tables 5 and 8. For the male annuitants, 
both the mean and the variance are remarkably similar, while 
there are some discrepancies for female annuitants. As discussed 
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Table 7
Calibration of the copula model via MLE. The subscripts X, Y refer to the marginals 
of the male and female annuitants, respectively. Notice that α is negative and away 
from 0, so according to Equation (12) there is positive dependence.

μX σX μY σY α

88.783 5.927 90.118 5.145 −4.144

Table 8
Comparison of the means, variances and correlation of X and Y using: the uncen-
sored data, the whole data set (wrongly assuming no censoring), the KM estimator 
and the copula model, respectively.

Unc. Whole KM Copula

Mean(X) 74.514 71.710 86.769 85.427
Mean(Y) 74.011 68.871 89.625 87.167
Var(X) 52.049 42.821 75.553 55.199
Var(Y) 61.707 54.118 56.316 43.090
Corr(X,Y) 0.820 0.776 – 0.512

Fig. 12. Joint lifetime distribution for the copula construction of Frees et al. (1996).

earlier, for this particular data set there is barely any information 
about the right tail of the females’ distribution, and so there is no 
surprise in models yielding slightly different results.

In Fig. 12 we show the joint distribution given by the copula, 
with the B-RUP results already presented in Fig. 7. As expected, 
the parametric copula produces a less “cloudy” and elliptical dis-
tribution, with less mass on “peripheral” couples like (70, 85). The 
copula also gives a slightly stronger correlation (0.51 versus 0.48), 
but we can consider this difference as negligible in practice.

Finally, we check if the small discrepancies in the survival func-
tions of the B-RUP and the copula model are also observed once 
we compute the annuity ratio. The annuity results for the Frank 
copula are in Figs. 13a and 13b. Apart from the areas where both 
annuitants are considerably old (> 75) at the time of contract ini-
tiation, we see that the B-RUP and copula models tend to give very 
similar results.
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Fig. 13. Ratio between the annuity values of the joint and independent survival models using the copula construction. The left plot (a) shows the annuity ratio for a fixed 
interest rate r = 0.05. Similar results when the couples have the same age are presented on the right plot (b).
All in all the B-RUP and the Frank copula of Frees et al. (1996)
show similar performances–but this holds true also for the other 
models of Frees et al. (1996) and Luciano et al. (2008)–so why 
should one prefer the B-RUP for annuity pricing?

While working nicely on data, copulas do not have the same 
flexibility of the B-RUP. In particular when a priori knowledge can 
be used to improve fitting, or to deal with specific characteris-
tics of the data—like a severe lack of observations in the tails—the 
B-RUP clearly has an edge over the other commonly used ap-
proaches. And this without taking into consideration the model 
risk involved in every parametric choice behind the use of copulas 
(Hull, 2015; Mikosch, 2006). This is why we believe that the non-
parametric approach the B-RUP proposes, which combines a priori 
knowledge (when meaningful) and the ability of learning from the 
data, represents a viable and powerful alternative to the existing 
approaches to the modeling of coupled lifetimes. The fact that one 
can get the same results, but also extend them with experts’ judge-
ments (eliciting a different a priori as in Appendix A) is a plus we 
deem worth using.

6. Conclusions

In this paper we have proposed the bivariate reinforced urn 
process (B-RUP) as a way of modeling dependent mortality, to 
price joint and survivor annuities.

The main advantages of the B-RUP lie in its intuitive con-
struction, in the possibility of combining experts’ judgements with 
empirical evidence, in the ability of the model to learn and im-
prove its performances over time, like in many machine learning 
approaches, but without “black boxes” (Knight, 2017), and in the 
successful treatment of right-censored observations, very common 
in annuity modeling.

In the absence of a credible a priori, which would give a strong 
competitive edge to its use, the B-RUP is nevertheless able to repli-
cate the performances of other commonly used approaches (e.g. 
copulas as in Frees et al. (1996) or Luciano et al. (2008)), thus 
showing an interesting flexibility. Differently from other models, 
however, the B-RUP can be used on a continuous basis, as it auto-
matically updates its parameters whenever new data become avail-
able, without the necessity of re-estimating the model entirely. 
This can be extremely useful in an online learning environment. 
Finally, being nonparametric, the B-RUP is less subject to model 
risk than copulas or similar approaches (Hull, 2015), especially if a 
clever use of priors can also account for data problems.

Using artificial data and a well-known Canadian data set of an-
nuities (Frees et al., 1996), we have discussed the performances of 
the B-RUP, which appear definitely satisfactory. In analyzing those 
performances, we have also discussed how a sufficient number of 
data can correct a wrong a priori, but also how strong priors may 
try to correct for historical bias and deal with tail events.
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In terms of performances, the model provides results in a very 
reasonable time, spanning from a few minutes to a couple of 
hours, depending on the size of the data set and the amount of 
predictions required. In particular, for the Canadian data set con-
sidered and 104 iterations of the Gibbs sampler, the algorithm took 
approximately 1 minute of computing time in a C++ environment 
and an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz processor.

In the future, it would be extremely useful to go deeper into 
the study of credible and reliable a prioris for annuity modeling, 
by gathering opinions and recommendations from experts. From 
a computational point of view, conversely, it could be meaning-
ful to find ways of introducing parallelization in the simulations of 
the B-RUP. While not immediately relevant to the application de-
scribed in this paper, such a possibility could dramatically expand 
the applicability and the performances of reinforced urn models 
in insurance and finance (Amerio et al., 2004; Cheng and Cirillo, 
2018, 2019; Peluso et al., 2015).
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Appendix A. Changing the prior

In this section we include additional results about the impact of 
different priors on the joint lifetime distribution for the Canadian 
data set of Section 5.2. These results are meant to be compared 
with the Poisson prior and the copula model of Section 5.2.

We consider two alternative settings:

• G A = Gomp(50, 6), G B = Gomp(30, 2) and GC = Gomp(30, 3), 
where Gomp(μ, σ) denotes a Gompertz distribution (see 
Equation (11)). We call this the Gompertz scenario.

• G A = Uni(85), G B = Uni(20) and GC = Uni(20), where Uni(μ)

denotes a discrete uniform distribution with support [0, μ]. 
This is the Uniform scenario.

The results obtained using the Gompertz scenario are in Fig. 14, 
and they are very similar to the Poisson case. On the other hand, 
the results obtained with the Uniform scenario, shown in Fig. 15, 
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Fig. 14. Comparison of the marginals of X and Y using a Gompertz prior. In green we show the prior distribution, the Kaplan-Meier estimators in red and the B-RUP solution 
in blue. The upper row shows the results for the low belief scenario and the lower row the same for the high belief scenario. All distributions are conditioned on the 
minimum value of the uncensored observations. For this example, Xmin = 51 and Ymin = 46.

Fig. 15. Comparison of the marginals of X and Y using an Uniform prior. In green we show the prior distribution, the Kaplan-Meier estimators in red and the B-RUP solution 
in blue. The upper row shows the results for the low belief scenario and the lower row the same for the high belief scenario. All distributions are conditioned on the 
minimum value of the uncensored observations. Here Xmin = 51 and Ymin = 46.
187
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Table 9
Comparison of the means, variances and correlation of X and Y using: the uncen-
sored data, the whole data set (wrongly assuming no censoring), the KM estimator 
and the B-RUP estimator with Gompertz and Uniform priors, respectively. The sub-
script l (h) indicates low (high) strength of belief.

Unc. Whole KM Gompl Gomph Unil Unih

Mean(X) 74.514 71.710 86.769 85.907 85.865 87.457 90.819
Mean(Y) 74.011 68.871 89.625 84.950 88.208 89.696 94.295
Var(X) 52.049 42.821 75.553 65.519 67.886 106.766 208.802
Var(Y) 61.707 54.118 56.316 45.047 64.267 91.114 217.951
Corr(X,Y) 0.820 0.776 – 0.475 0.414 0.611 0.810

are significantly different, especially for high strengths of belief–
see Figs. 15c and 15d–where the B-RUP and KM marginals have 
very little in common. Trivially, as one grows older the probability 
of demise increases, and therefore imposing a uniform distribu-
tion for the lifetime of an individual is highly unrealistic, so this 
mismatch was actually to be expected. In this sense, the B-RUP 
inherits the pros and the cons of the prior setting used, for sure 
under high strengths of belief. Naturally and conversely, for low 
strengths of belief, the B-RUP is able to capture both marginals, 
except for the areas with very few observations, so that the model 
is able to override a wrong prior given a sufficient amount of ob-
servations.

In Table 9 we show the first two moments and the correla-
tion, similar to what we did in Table 5 for the Poisson prior. As 
before, the subscript l (h) denotes low (high) strength of belief. 
Notice that, for low strengths of belief, the difference in the B-RUP 
results are mainly due to the choice of the initial sample for A in 
the Gibbs sampler, which in our case is generated from its prior 
distribution. Consistently with what we have already said, the uni-
form scenario with a high strength of belief generates the most 
radical results, including a correlation close to the one (0.8) we 
can estimate from the uncensored observations. All the other B-
RUPs tend to suggest a less extreme correlation, in the vicinity of 
0.5, in line with Frees et al. (1996) and Luciano et al. (2008). In 
any case, a correlation of 0.5 should definitely not be ignored by 
assuming independence, as per the KM approach.

References

Amerio, E., Muliere, P., Secchi, P., 2004. Reinforced urn processes for modeling credit 
default distributions. International Journal of Theoretical and Applied Finance 07 
(04), 407–423. https://doi .org /10 .1142 /S0219024904002505.

Blackwell, D., MacQueen, J.B., 1973. Ferguson distributions via Pólya urn schemes. 
The Annals of Statistics 1 (2), 353–355. https://doi .org /10 .1214 /aos /1176342372.

Brown, J.R., Poterba, J.M., 2000. Joint life annuities and annuity demand by married 
couples. The Journal of Risk and Insurance 74 (4), 527–553. https://doi .org /10 .
2307 /253849.

Bulla, P., 2005. Application of Reinforced Urn Processes to Survival Analysis. PhD 
thesis. Bocconi University.

Bulla, P., Muliere, P., Walker, S., 2007. Bayesian nonparametric estimation of a bi-
variate survival function. Statistica Sinica 17 (2), 427–444. http://www.jstor.org /
stable /24307726.

Carriere, J.F., 2000. Bivariate survival models for coupled lives. Scandinavian Actuar-
ial Journal 1, 17–32. https://doi .org /10 .1080 /034612300750066700.

Cheng, D., Cirillo, P., 2018. A reinforced urn process modeling of recovery rates and 
recovery times. Journal of Banking & Finance (ISSN 0378-4266) 96, 1–17. http://
www.sciencedirect .com /science /article /pii /S037842661830178X.

Cheng, D., Cirillo, P., 2019. A urn-based nonparametric modeling of the dependence 
between PD and LGD with an application to mortgages. https://doi .org /10 .2139 /
ssrn .3360531.

Cirillo, P., Hüsler, J., Muliere, P., 2013. Alarm systems and catastrophes from a di-
verse point of view. Methodology and Computing in Applied Probability 15 (4), 
821–839.

Cox, D.R., Oakes, D., 1984. Analysis of Survival Data. Chapman & Hall. 
ISBN 9780412244902.

Dabrowska, D.M., 1988. Kaplan-Meier estimate on the plane. The Annals of Statis-
tics 16 (4), 1475–1489. https://doi .org /10 .1214 /aos /1176351049.

de Finetti, B., 2017. Theory of Probability: A Critical Introductory Treatment. Wiley 
Series in Probability and Statistics. Wiley. ISBN 9781119286370.
188
Derbyshire, J., 2017. The siren call of probability: dangers associated with using 
probability for consideration of the future. Futures 88, 43–54. https://doi .org /
10 .1016 /j .futures .2017.03 .011.

Doksum, K., 1974. Tailfree and neutral random probabilities and their posterior 
distributions. Annals of Probability 2 (2), 183–201. https://doi .org /10 .1214 /aop /
1176996703.

Elandt-Johnson, R.C., Johnson, N.L., 1980. Survival Models and Data Analysis. John 
Wiley. ISBN 9780471031741.

Ferguson, T.S., 1973. A Bayesian analysis of some nonparametric problems. The An-
nals of Statistics 1 (2), 209–230. https://doi .org /10 .1214 /aos /1176342360.

Fortini, S., Petrone, S., 2012. Hierarchical reinforced urn processes. Statistics & Prob-
ability Letters 82 (8), 1521–1529. https://doi .org /10 .1016 /j .spl .2012 .04 .012.

Frees, E.W., Carriere, J., Valdez, E., 1996. Annuity valuation with dependent mortal-
ity. The Journal of Risk and Insurance 63 (2), 229–261. https://doi .org /10 .2307 /
253744.

Good, P., 1994. Permutation, Parametric and Bootstrap Tests of Hypotheses. Springer, 
New York.

Gribkova, S., Lopez, O., 2015. Non-parametric copula estimation under bivariate cen-
soring. Scandinavian Journal of Statistics 42 (4), 925–946. https://doi .org /10 .
1111 /sjos .12144.

Hull, J.C., 2015. Risk Management and Financial Institutions, 4th edition. Wiley, New 
York. ISBN 9781119448112.

Jagger, C., Sutton, C.J., 1991. Death after marital bereavement—is the risk increased? 
Statistics in Medicine 10 (3), 395–404. https://doi .org /10 .1002 /sim .4780100311.

Kaplan, E.L., Meier, P., 1958. Nonparametric estimation from incomplete observa-
tions. Journal of the American Statistical Association 53 (282), 457–481. https://
doi .org /10 .2307 /2281868.

Klein, J.P., Moeschberger, M.L., 2003. Survival Analysis Techniques for Censored and 
Truncated Data, second edition.

Knight, W., 2017. The dark secret at the heart of AI. Technology Review 120, 54–63.
Lin, D.Y., 1993. A simple nonparametric estimator of the bivariate survival function 

under univariate censoring. Biometrika 80, 573–581. https://doi .org /10 .2307 /
2337178.

Lopez, O., 2012. A generalization of Kaplan-Meier estimator for analyzing bivariate 
mortality under right-censoring and left-truncation with applications to model-
checking for survival copula models. Insurance. Mathematics & Economics 51 
(3), 505–516. https://doi .org /10 .1016 /j .insmatheco .2012 .07.009.

Luciano, E., Spreeuw, J., Vigna, E., 2008. Modelling stochastic mortality for depen-
dent lives. Insurance. Mathematics & Economics 43, 234–244. https://doi .org /10 .
1016 /j .insmatheco .2008 .06 .005.

Mahmoud, H., 2008. Polya Urn Models. Chapman & Hall/CRC, Boca Raton. 
ISBN 9781420059830.

Mikosch, T., 2006. Copulas: tales and facts. Extremes 9, 3–20. https://doi .org /10 .
1007 /s10687 -006 -0015 -x.

Mitchell, O., Poterba, J.M., Warshawsky, M., Brown, J., 1999. New evidence on the 
money’s worth of individual annuities. The American Economic Review 89 (5), 
1299–1318. http://www.jstor.org /stable /117059.

Muliere, P., Secchi, P., Walker, S.G., 2000. Urn schemes and reinforced random walks. 
Stochastic Processes and Their Applications 88 (1), 59–78. https://doi .org /10 .
1016 /S0304 -4149(99 )00119 -2. ISSN 03044149.

Muliere, P., Secchi, P., Walker, S.G., 2003. Reinforced random processes in continuous 
time. Stochastic Processes and Their Applications 104 (1), 117–130. https://doi .
org /10 .1016 /S0304 -4149(02 )00234 -X.

Murphy, K.P., 2012. Machine Learning: A Probabilistic Perspective. The MIT Press, 
Cambridge MA. ISBN 0262018020. 9780262018029.

Nelsen, R.B., 2006. An Introduction to Copulas. Springer, New York. http://www.
worldcat .org /search ?qt =worldcat _org _all &q =0387286594.

Peluso, S., Mira, A., Muliere, P., 2015. Reinforced urn processes for credit risk models. 
Journal of Econometrics 184 (1), 1–12. https://doi .org /10 .1016 /j .jeconom .2014 .
08 .003.

Pruitt, R.C., 1991. On negative mass assigned by the bivariate Kaplan-Meier 
estimator. The Annals of Statistics 19, 443–453. https://doi .org /10 .1214 /aos /
1176347992.

Sanders, L., Melenberd, B., 2016. Estimating the joint survival probabilities of mar-
ried individuals. Insurance. Mathematics & Economics 67, 88–106. https://doi .
org /10 .1016 /j .insmatheco .2015 .12 .006.

Shackle, G.L.S., 1955. Uncertainty in Economics and Other Reflections. Cambridge 
University Press, Cambridge. ISBN 9780521153317.

Shen, P.-S., Yan, Y.-F., 2008. Nonparametric estimation of the bivariate survival func-
tion with left-truncated and right-censored data. Journal of Statistical Planning 
and Inference 138 (12), 4041–4054. https://doi .org /10 .1016 /j .jspi .2008 .02 .007.

Sheshinski, E., 2007. The Economic Theory of Annuities. Economics Books, vol. 8536. 
Princeton University Press. ISBN 9780691133058.

Sylverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman 
& Hall/CRC. ISBN 9780412246203.

Taleb, N.N., 2007. The Black Swan: The Impact of the Highly Improbable. Random 
House. ISBN 978-0812973815.

Walker, S., Muliere, P., 1997. Beta-Stacy processes and a generalization of the Pólya-
urn scheme. The Annals of Statistics 25 (4), 1762–1780. https://doi .org /10 .1214 /
aos /1031594741.

https://doi.org/10.1142/S0219024904002505
https://doi.org/10.1214/aos/1176342372
https://doi.org/10.2307/253849
https://doi.org/10.2307/253849
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib2A57E053CC4B3CAB398DD1526B7D4C6As1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib2A57E053CC4B3CAB398DD1526B7D4C6As1
http://www.jstor.org/stable/24307726
http://www.jstor.org/stable/24307726
https://doi.org/10.1080/034612300750066700
http://www.sciencedirect.com/science/article/pii/S037842661830178X
http://www.sciencedirect.com/science/article/pii/S037842661830178X
https://doi.org/10.2139/ssrn.3360531
https://doi.org/10.2139/ssrn.3360531
http://refhub.elsevier.com/S0167-6687(21)00067-6/bibF0E0EAF035E088D3DF9F8E23972226EFs1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bibF0E0EAF035E088D3DF9F8E23972226EFs1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bibF0E0EAF035E088D3DF9F8E23972226EFs1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib575A4F4F8F12072842799D3FD963C985s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib575A4F4F8F12072842799D3FD963C985s1
https://doi.org/10.1214/aos/1176351049
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib846C0AFB0F309DA96F73AAB453319B6Bs1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib846C0AFB0F309DA96F73AAB453319B6Bs1
https://doi.org/10.1016/j.futures.2017.03.011
https://doi.org/10.1016/j.futures.2017.03.011
https://doi.org/10.1214/aop/1176996703
https://doi.org/10.1214/aop/1176996703
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib85C71D6237ADC5B548735B243A8D5B59s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib85C71D6237ADC5B548735B243A8D5B59s1
https://doi.org/10.1214/aos/1176342360
https://doi.org/10.1016/j.spl.2012.04.012
https://doi.org/10.2307/253744
https://doi.org/10.2307/253744
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib3E1B7D72F0E885C6E213C4DB38A27327s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib3E1B7D72F0E885C6E213C4DB38A27327s1
https://doi.org/10.1111/sjos.12144
https://doi.org/10.1111/sjos.12144
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib63B0FC998685327831F96BBE7B07B7E2s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib63B0FC998685327831F96BBE7B07B7E2s1
https://doi.org/10.1002/sim.4780100311
https://doi.org/10.2307/2281868
https://doi.org/10.2307/2281868
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib4FAC04DE2D6B1C09AC5104E58A9E372Cs1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib4FAC04DE2D6B1C09AC5104E58A9E372Cs1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib1174FB5AA0B59E860FE4C4D1BDB51E97s1
https://doi.org/10.2307/2337178
https://doi.org/10.2307/2337178
https://doi.org/10.1016/j.insmatheco.2012.07.009
https://doi.org/10.1016/j.insmatheco.2008.06.005
https://doi.org/10.1016/j.insmatheco.2008.06.005
http://refhub.elsevier.com/S0167-6687(21)00067-6/bibA8098B268A80FA117AA7FB6B014BA291s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bibA8098B268A80FA117AA7FB6B014BA291s1
https://doi.org/10.1007/s10687-006-0015-x
https://doi.org/10.1007/s10687-006-0015-x
http://www.jstor.org/stable/117059
https://doi.org/10.1016/S0304-4149(99)00119-2
https://doi.org/10.1016/S0304-4149(99)00119-2
https://doi.org/10.1016/S0304-4149(02)00234-X
https://doi.org/10.1016/S0304-4149(02)00234-X
http://refhub.elsevier.com/S0167-6687(21)00067-6/bibA122FDD9928175CE2E15B670BF62C86Cs1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bibA122FDD9928175CE2E15B670BF62C86Cs1
http://www.worldcat.org/search?qt=worldcat_org_all&q=0387286594
http://www.worldcat.org/search?qt=worldcat_org_all&q=0387286594
https://doi.org/10.1016/j.jeconom.2014.08.003
https://doi.org/10.1016/j.jeconom.2014.08.003
https://doi.org/10.1214/aos/1176347992
https://doi.org/10.1214/aos/1176347992
https://doi.org/10.1016/j.insmatheco.2015.12.006
https://doi.org/10.1016/j.insmatheco.2015.12.006
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib95A6C1C88E25AFCD562FBAD3C9E7C368s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib95A6C1C88E25AFCD562FBAD3C9E7C368s1
https://doi.org/10.1016/j.jspi.2008.02.007
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib334ADC1039D91740FFAB60AD8C097F64s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib334ADC1039D91740FFAB60AD8C097F64s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib13967CE1984B0E472165D777E2B9CAC5s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib13967CE1984B0E472165D777E2B9CAC5s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib6FD8F8CEA133C6736685457E5FBE68A5s1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib6FD8F8CEA133C6736685457E5FBE68A5s1
https://doi.org/10.1214/aos/1031594741
https://doi.org/10.1214/aos/1031594741


L.A. Souto Arias and P. Cirillo Insurance: Mathematics and Economics 99 (2021) 174–189
Wang, W., Wells, M.T., 1997. Nonparametric estimators of the bivariate survival func-
tion under simplified censoring conditions. Biometrika 84, 863–880. https://
doi .org /10 .1093 /biomet /84 .4 .863.

Winklevoss, H., 1977. Pension Mathematics with Numerical Illustrations. 
Pension Research Council, Wharton School, University of Pennsylvania. 
ISBN 9780812231960.

Youn, H., Shemaykin, A., 1999. Statistical aspects of joint life insurance pricing. 
In: 1999 Proceedings of the Business and Statistics Section of the Ameri-
can Statistical Association, pp. 34–38. https://www.semanticscholar.org /paper /

STATISTICAL-ASPECTS -OF-JOINT-LIFE -INSURANCE -PRICING -Youn -Shemyakin /
a77552c3400d4d49cd97777bea63524f54299b64.

Youn, H., Shemaykin, A., 2001. Pricing practices for joint last survivor 
insurance. In: Actuarial Research Clearing House, 2001.1. https://
www.soa .org /globalassets /assets /library /research /actuarial -research -clearing -
house /2000 -09 /2001 /arch -1 /arch01v19 .pdf.

Youn, H., Shemyakin, A., Herman, E., 2002. A re-examination of the joint mortality 
functions. North American Actuarial Journal 6 (1), 166–170. https://doi .org /10 .
1080 /10920277.2002 .10596035.
189

https://doi.org/10.1093/biomet/84.4.863
https://doi.org/10.1093/biomet/84.4.863
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib2E979B3CD01D15978FD1C4C4A9E401EFs1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib2E979B3CD01D15978FD1C4C4A9E401EFs1
http://refhub.elsevier.com/S0167-6687(21)00067-6/bib2E979B3CD01D15978FD1C4C4A9E401EFs1
https://www.semanticscholar.org/paper/STATISTICAL-ASPECTS-OF-JOINT-LIFE-INSURANCE-PRICING-Youn-Shemyakin/a77552c3400d4d49cd97777bea63524f54299b64
https://www.semanticscholar.org/paper/STATISTICAL-ASPECTS-OF-JOINT-LIFE-INSURANCE-PRICING-Youn-Shemyakin/a77552c3400d4d49cd97777bea63524f54299b64
https://www.semanticscholar.org/paper/STATISTICAL-ASPECTS-OF-JOINT-LIFE-INSURANCE-PRICING-Youn-Shemyakin/a77552c3400d4d49cd97777bea63524f54299b64
https://www.soa.org/globalassets/assets/library/research/actuarial-research-clearing-house/2000-09/2001/arch-1/arch01v19.pdf
https://www.soa.org/globalassets/assets/library/research/actuarial-research-clearing-house/2000-09/2001/arch-1/arch01v19.pdf
https://www.soa.org/globalassets/assets/library/research/actuarial-research-clearing-house/2000-09/2001/arch-1/arch01v19.pdf
https://doi.org/10.1080/10920277.2002.10596035
https://doi.org/10.1080/10920277.2002.10596035

	Joint and survivor annuity valuation with a bivariate reinforced urn process
	1 Introduction
	2 Joint and survivor annuities
	3 Right-censoring
	4 The Bivariate Reinforced Urn Process
	4.1 Reinforced Urn Processes and beta-Stacy processes
	4.1.1 Urn representation
	4.1.2 Defining a prior

	4.2 Building dependence

	5 Empirical results
	5.1 Analytical example
	5.2 Canadian data set of Frees et al. (1996)
	5.2.1 B-RUP results for the joint survival function
	5.2.2 Annuity pricing with the B-RUP
	5.2.3 What about copulas?


	6 Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A Changing the prior
	References


